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When a fluid pushes on and accelerates a heavier fluid small 

perturbations at their interface grow with time and lead to turbulent 

mixing. The same instability, known as the Rayleigh-Taylor instability, 

operates when a heavy fluid is supported by a lighter fluid in a 

gravitational field. It has a particularly deleterious effect on initial-

confinement-fusion implosions and is known to operate over 18 orders of 

magnitude in dimension. We propose analytic expressions for the bubble 

and spike amplitudes and mixing widths in the linear, nonlinear, and 

turbulent regimes. They cover arbitrary density ratios and accelerations 

that are constant or changing relatively slowly with time. We discuss their 

scalings and compare them with simulations and experiments. 

PACS numbers 47.20.Bp, 47.20.Gv, 47.40.Nm 

 

The Rayleigh-Taylor (RT) instability is probably the oldest and most ubiquitous 

phenomenon: A light fluid cannot support a heavier fluid – solids are required to support 

heavier objects. The opposite, however, is quite feasible: Water in a glass can support the 

lighter air above it, so that waves generated by swishing it will eventually die down. 

Turned upside down, the water spills even though it is possible, in principle, to support a 

perfectly flat interface in either configuration. The “heavy-over-light” configuration is 
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known as unstable. This is true only in a gravitational field such a Eg  ( 8.9 m/s2) which 

defines direction. If 0g , as in outer space, either configuration is neutral meaning a 

small perturbation of amplitude 0  will remain static (unless given an initial velocity 0 ). 

The instability was named after Lord Rayleigh [1] and G. I. Taylor [2] who studied 

the linear regime. Lord Rayleigh considered only a gravitational field while Taylor added 

an acceleration Pg  induced by pressure gradients, showing that the effective PE ggg 

. The algebraic sign is important – a glass of water in free fall is neutrally stable as in 

outer space: 0g . While gravity is (almost) always constant in time, Taylor’s extension 

opened the issue of man-made time-dependent )(tg . 

The classical RT instability devoid of any stabilizing mechanism operates at all 

scales: nanometer-size foils driven by radiation pressure [3] to gigameter-size supernova 

explosions [4] and even galactic scales [5]. Of particular importance is its deleterious 

effect on millimeter-size inertial-confinement-fusion capsules - It is believed that the 

failure, so far, to achieve ignition on the National Ignition Facility may be caused by RT 

mixing [6]. Experiments to study this instability are carried out at scales of a few 

centimeters [7-14]. The purpose of this letter is to provide analytic expressions covering 

this vast range of scales and, with certain restrictions, a large class of )(tg . 

As depicted in Fig. 1, there are 3 stages: Linear, nonlinear, and turbulent. The 

configuration and the notation is similar to experiments with liquids in a tank [7-9, 11-

12,14]: A heavy fluid below the equilibrium dashed line supports a lighter fluid above, a 

stable configuration in Eg


. The tank is accelerated down with a quasi-constant Pg  so that 

the effective PEP gggg   with EP gg 70 . A single-scale perturbation kxt cos)( , 
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 /2k , keeps its cosine shape during the linear regime but its amplitude )(t  grows 

with time. The amplitude below the dashed line, i.e., the penetration of the lighter fluid 

(density l ) into the heavier fluid below  (density h ) is denoted by b  (b=bubble). s  

(s=spike) denotes the amplitude above the dashed line. By convention 0b  and 0s . 

In the linear regime, i.e. 1k , bs    . In the nonlinear regime b  still refers to the 

lowest penetration of l  into h  and conversely for s , but the shape is far from cosine. 

When the initial shape consists of several modes a turbulent mixing width develops. By 

convention, the 1-5% penetration depth of l  into h  is denoted by bh , and conversely 

for sh , both taken 0 . We will present analytic expressions for sb,  and sbh ,  when the 

acceleration is constant or changing with time. 

Among all relevant quantities the nonlinear spike amplitude stands out as 

exceptionally challenging, defying all analytic or semi-analytic descriptions. Previous 

models [15-16] have been found to be inadequate [16-17] when compared with exact, 

albeit numerical solutions, a conclusion confirmed by recent calculations [18]. We 

propose a new approach and a new expression for s
nonlinear , and carry over that approach 

to sh  to predict their behavior when )(tgg  . 

Linear. The governing equation in the linear regime is [1,2] 

 0  gkA             (1) 

where  )(tgg acceleration and A  is the Atwood number defined by 

)/()( lhlh   . When g  is constant the solution is 

 )cosh()( 0 tgkAt               (2) 
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assuming that the initial growth rate 00  (otherwise a sinh  term must be added.) 

A closed-form solution to Eq. (1) cannot be obtained, nor should one be expected, for 

time-dependent accelerations. Indeed, some )(tg s give rise to specific instabilities known 

by separate names such as the Richtmyer-Meshkov instability when )(v)( ttg   or the 

Faraday instability when )cos()( 10 tggtg  . 

We now obtain an analytic solution for large, slowly varying accelerations. Define 

 dttgts
t


0

)()(             (3) 

and use the transformation 

       
ds
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
            (4) 

to reduce Eq. (1) to 0/ 22   kAdsd  with the solution 

 )cosh()( 0 kAst   .            (5)  

The above transformation is useful because it requires only the calculation of )(ts  

which is then used in Eq. (5) to find )(t . Otherwise, Eq. (1) must be solved numerically 

(analytic solutions can be found for only a few )(tg ). Even when dropping 
dt

d

g

g

2


 is not 

justified and Eq. (1) must be solved numerically Eq. (5) can serve as an estimate. 

Since )()( tt bs    both are said to “scale with s” in the linear regime. This will not 

be true in the nonlinear regime nor, perhaps, in the turbulent regime. We use the word 

“scaling” in the traditional sense, i.e., experiments or simulations with different )(tg s 

will have different )(t s, but when plotted versus s  all the curves will collapse onto one 

universal curve, Eq. (5). 
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Nonlinear. If 0  is large or if )(t  grows such that 1k  then the bubbles and 

spikes behave differently and in a more complicated way. As always, one must solve the 

Euler equations, a set of partial differential equations, but this must now be done 

numerically because they no longer simplify. We will do so using the hydrodynamic code 

CALE [19] and compare the numerical results with the analytic model described below. 

We believe the most successful model to date has been the Layzer model [20] and its 

extensions [16, 21-22]. Using a “modern” notation, 

 .0~2)~21( 2
2

2   gk              (6) 

This is Layzer’s Eq. (55) with the curvature function 2
~  appropriately defined (see 

below), and applies for a single fluid, i.e. 1A , in Cartesian coordinates, also called 

“2D”, and for the bubble only ( 0 ). For brevity and clarity we do not treat the “3D” 

geometry, also called “tubular flow”, which parallels 2D flow with similar results [16-17, 

20-21]. 

Applying the transformation of Eq. (4) to Eq. (6) we obtain 

0~2)/(/)~21( 2
222

2   dsdkdsd . We justify below the assumption .~
2 const

Although this equation remains a nonlinear ordinary differential equation (ODE), its 

solution is: 

 )]ln[cosh(
~21

)( 2
0 ksd

k
t 






 


                (7)  

where 2
22

2 )~21/(~2  d . 

Layzer [20] assumed 00   and found 6/)1(/~ 3
22

kek    which cannot be 

constant. In our extension to arbitrary 0  we found [21] 
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 6/})13(1{/~ )(3
022

0  kekk .            (8) 

It follows that if k3/1*0   then 2
~  can be constant, equal to -1/6, giving 2/3d . 

Layzer’s model for bubbles was generalized to arbitrary A  by Goncharov [16]: Eq. 

(6) is replaced by a substantially more complicated but still a second-order ODE. Eq. (8), 

however, remains the same and therefore the solution to Goncharov’s ODE can be 

obtained by a rather simple transformation for 6/1.~
2  const . Applying Eq. (4) to 

that solution we obtained [23] 

))]3/()1(6ln[cosh(
)1(3

3
)( 0 AAkAs

kA

A
Ab 











 .          (9) 

This is the bubble amplitude for arbitrary A . Of course tgs   for constant g . 

The spike is much more challenging. For 1A  Zhang proposed [22] using Layzer’s 

equation, Eq. (6), with a negative   and a positive 2  just as one does in the linear 

regime (  and 2  always have opposite signs). The curvature 2  can no longer be taken 

to be constant but instead approaches   – See Eq. (8) with   large and negative. We 

pointed out [23] that this requires )1(s  to scale with x  defined by 

 dtdttgx   ])([ .        (10) 

The argument is as follows: For very large 2  Eq. (6) requires that 0 g  hence 

x~ . Here we propose 

 )]ln[cosh(
1

)1( 0 xk
k

s   .     (11) 
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Of course 2/2gtx   for constant g . This expression is in fair agreement with solutions 

to Eq. (6) with a negative  , particularly for large 0 , as proposed by Zhang [22] for a 

constant acceleration. 

The last and no doubt most important element is )(As , the nonlinear spike 

amplitude for arbitrary A . Numerical simulations [18, 24-25] reveal a complex structure 

exacerbated by coupling to secondary instabilities such as the KH (Kelvin-Helmholtz) 

instability. This coupling was absent in the single-fluid case allowing potential-flow-

models like Layzer’s to provide an adequate description of )1(s  either as an ODE like 

Eq. (6) or explicitly like Eq. (11). When a second fluid is present the KH instability 

makes such an approach intractable.  

Instead, we propose a different approach: Interpolation. We know that )(As  is 

anchored at the two extreme ends of A : For 0A  or 1A , )()( AA bs    given by 

Eq. (9). For 1A , )1(s  is given, at least approximately, by Eq. (11). All we need is to 

interpolate between these two ends, guided by numerical simulations. We propose 

 































 
 1

)(

)1(
6.04.01)()( 10

A

b

s
bs

A
AAA


 .         (12) 

We carried out several CALE simulations of Linear Electric Motor [11-12] or LEM-

like experiments of which we show two in Fig. 2, 48.0A  and 81.0A . The 7.3 cm-

wide tank accelerates down at a constant 098.0100 Eg cm/ms2 and has 3 initially 

sinusoidal perturbations with 13.00  cm. The insets show the interfaces between the 

two fluids at 20 ms. Notice the complexity of the spikes compared with the relative 
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simplicity of the bubbles. The dashed lines are from CALE, the continuous lines from Eq. 

(9) for the bubbles and Eq. (12) for the spikes. 

Perhaps the most important deduction from the above discussion is that )(As , given 

by Eq. (12), scales neither with s  nor with x , but is a mixture of both. In other words, 

the traditional approach of varying )(tg  and plotting )(As  as a function of either )(ts  

or )(tx  will not collapse to a single curve. It will collapse to the s –curve for 1A  

where )()( AA bs   , and to the x –curve for 1A , but for intermediate values of A  

neither scaling is valid. 

We ran a number of CALE simulations to verify the above observation. An example 

is shown in Fig. 3: The same LEM-tank is subjected to a quadratically increasing 

2~)( ttg  reaching Eg1000  in 15 ms. The CALE curves, again in dashes, are compared 

with the analytic expressions: Eq. (9) for the bubbles and Eq. (12) for the spikes. Fig. 3 

shows that this approach is in good agreement with direct numerical simulations. We 

obtained equally good (and sometimes better) agreement with other acceleration histories 

such as nttg ~)( , 51n , or 
2

~)( ttetg  . 

Turbulent. Random perturbations, initially very small, are observed experimentally to 

grow into turbulent mixing layers sbh ,  evolving with time [8, 10-14]. This regime is both 

more diffcult and yet, in some sense, “easier” than the previous one. It is difficult because 

there is no equation corresponding to Eq. (1) or Eq. (6) whose solution gives sbh , . It 

requires extremely large 3-dimensional hydrocode simulations [26] (beyond our present 

capability) for a numerical solution. On the other hand, experiments [8, 10-14] have 

indicated a relatively simple behavior when g  is constant: 
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 2,, Agth sbsb  .          (13) 

The absence of any single-scale k , plus the limit 0)0(, th sb  lead directly to the 

form given above: 2gt  is the only length scale available if g  is constant. If g  varies with 

time then it must involve at least one time-constant, call it T , and then )/,,( 2 TtgtAfh   

cannot be determined by any dimensional argument. 

Experiments indicate that b  is a constant between 0.03 [14] and 0.07 [8, 10-13] 

independent of A , while s  depends on A : At low A  bs   , and increases with A  to 

become 4-5 times b  [12]. Since this behavior is similar to )(As , we compared the 

experimental results with an expression very similar to Eq. (12): 

  )1)(6.04.0(1)( 10  Abs rAA            (14) 

where 5.4/)1(  bsr  , taking 05.0b  from the same work [12]. Eq. (14) is shown 

in Fig. 4 and it compares well with the data recorded for constant g . 

Eq. (14) follows from 

 
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




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















 1

)(

)1(
6.04.01)()( 10

A

b

s
bs

Ah

Ah
AAhAh ,         (15) 

recovering Eq. (14) for constant g : bsbsbs AgtgtAAhAh  /)1(/)1()(/)1( 22  . Of 

course )()( AhAh bs   for low A  and )1()1( ss hAh  . 

We now turn to scaling. Experimentally, Read [8] showed that bh  scales with s , i.e., 

 2)( AsAh bb  ,          (16) 

also confirmed by LEM experiments [11]. As far as we know, there has been only one 

study, again experimental, of sh  scaling, indicating that sbh ,  both scale with s  [12]. We 
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call this “conventional scaling”. However, this was done at a low Atwood number 

22.0A  where one expects bs hh  . Here we conjecture another possibility: )1(sh  

scales with x , i.e., 

 xh ss  )1(2)1(  ,          (17) 

and Eq. (15) is valid, as is, with )(Ahb  given by Eq. (16) and )1(sh  by Eq. (17). Note that 

222 /9/)/)1((2/)1(2)(/)1( sxsxAsxAAhAhr bsbsbs   . We recover Eq. 

(14) for constant g : 2/2sx  , 5.4r . 

Conventional scaling predicts )1)(6.04.0(1/)()(/)( 10  Absbs rAAAhAh   

with 5.4r  for any )(tg  and for all t . In contrast, our scaling predicts 2/9 sxr   

whose value depends on )(tg  and, except for one case, on t . Let us start with the 

exception: When nttg ~)( , )1(4/)2(/ 2  nnsx . The ratio bs hh /  will again be time-

independent for this )(tg , but its value will still differ from conventional. For example, 

take 2n : 3/1/ 2  sx  hence 3r , compared with the conventional 5.4r . The ratio 

bs hh /  will be 1.3 and 1.7, compared with the conventional 1.4 and 2.1, for 48.0A  and 

81.0A  respectively. Since both scalings give bs hh   at low A  one must obviously 

look at large A  to discern the difference. 

Any other )(tg  will result in a time-dependent bs hh /  in our model. We show an 

example with 81.0A  in the inset of Fig. 4 for the case 
2

~)( ttetg   reaching a 

maximum of Eg170  at ~7 ms. The inset shows )(tg  in units of Eg100  and bh , which is 

the same (Eq. (16)) in both models. In red we show sh  according to the two different 

scalings: Conventional ( 5.4r ) and the new proposal ( 2/9 sxr  ). Between 0t  and 
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30t ms bs hh /  varies from 1.8 to 3.3 in our scaling, while it is always a constant ( 1.2  

for 81.0A ) with conventional scaling. At 30 ms our spike is 3.3/2.11.6 times larger 

than conventional. 

In conclusion, we propose that all bubble amplitudes )(Ab  or mixing widths )(Ahb  

scale with s  as in Eqs. (5), (9), and (16). The linear spike amplitude also scales with s  

because b
linear

s
linear   . The nonlinear )1(s  scales with x  – Eq. (11). The nonlinear 

)(As  has a mixed scaling – Eq. (12). The turbulent )1(sh  scales with x – Eq. (17). 

And, finally, )(Ahs  has a mixed scaling – Eq. (15). 
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Figure Captions 

Fig. 1. Schematic drawing of the RT instability in the linear, nonlinear, and turbulent 

regimes. 

Fig. 2. (Color online) Bubble and spike amplitudes as functions of time for a 

Egconstg 100.   problem with two different Atwood numbers: 48.0A  (red) and 

81.0A  (black). By convention 0b  and 0s . The LEM-like tank is 7.3 cm 

wide and starts with 3 sinusoidal perturbations of amplitude 13.00  cm. The dashed 

lines show sb,  as calculated by CALE. The analytic, continuous curves are 

calculated using Eq. (9) for b  and Eq. (12) for s . Snapshots at 20 ms. 

Fig. 3. (Color online) Same as Fig. 2 for a quadratically increasing acceleration 

2)15/(1000)( tgtg E , t  in ms. Snapshots at 15 ms. 

Fig. 4. (Color online) b  and s  as functions of Atwood number A . We take 05.0b   

(black) and Eq. (14) for )(As   (red). Experimental data from Ref. [12]. The inset 

shows sbh ,  as functions of time for 
2

~)( ttetg   shown as a dashed curve in units of 
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Eg100 . We have used Eq. (16) for bh  (black) and Eq. (15) for sh   (red) with 

5.4/)1()(/)1(  bsbs AhAhr   for conventional scaling, and 

22 /9/)1(2 sxsxr bs    for the new proposed scaling. At 30 ms the new scaling 

predicts a spike 1.6 times larger than conventional – see text. 
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